Despite its specializations, the brain is capable of mounting a robust inflammatory response to a wide variety of stimuli, including injuries, degeneration, and infections. These responses often develop first in the meninges / perivascular spaces and then spread into the parenchyma. Our laboratory is interested in understanding the factors that regulate innate and adaptive immune cell dynamics in the living brain. We are especially interested in identifying factors that guide divergent immunological outcomes ranging from beneficial to pathogenic. To gain novel insights into CNS immunity, we utilize a real-time imaging technique referred to as two-photon laser scanning microscopy. This approach allows us to image innate and adaptive immune cells in the living brain as they respond to different stimuli such as traumatic brain injury or infections. My lecture will reveal how immune cells in the brain are morphologically and functionally shaped by inflammatory cues (e.g. alarmins, cytokines) that ultimately dictate whether a response is helpful or harmful.

Abstract:

Despite its specializations, the brain is capable of mounting a robust inflammatory response to a wide variety of stimuli, including injuries, degeneration, and infections. These responses often develop first in the meninges / perivascular spaces and then spread into the parenchyma. Our laboratory is interested in understanding the factors that regulate innate and adaptive immune cell dynamics in the living brain. We are especially interested in identifying factors that guide divergent immunological outcomes ranging from beneficial to pathogenic. To gain novel insights into CNS immunity, we utilize a real-time imaging technique referred to as two-photon laser scanning microscopy. This approach allows us to image innate and adaptive immune cells in the living brain as they respond to different stimuli such as traumatic brain injury or infections. My lecture will reveal how immune cells in the brain are morphologically and functionally shaped by inflammatory cues (e.g. alarmins, cytokines) that ultimately dictate whether a response is helpful or harmful.

Recent relevant publications:

